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ABSTRACT: Untargeted metabolomics often produce large datasets with missing values. These missing values are derived from
biological or technical factors and can undermine statistical analyses and lead to biased biological interpretations. Imputation
methods, such as k-Nearest Neighbors (kNN) and Random Forest (RF) regression, are commonly used, but their effects vary
depending on the type of missing data, e.g., Missing Completely At Random (MCAR) and Missing Not At Random (MNAR). Here,
we determined the impacts of degree and type of missing data on the accuracy of kNN and RF imputation using two datasets: a
targeted metabolomic dataset with spiked-in standards and an untargeted metabolomic dataset. We also assessed the effect of
compositional data approaches (CoDA), such as the centered log-ratio (CLR) transform, on data interpretation since these methods
are increasingly being used in metabolomics. Overall, we found that kNN and RF performed more accurately when the proportion of
missing data across samples for a metabolic feature was low. However, these imputations could not handle MNAR data and
generated wildly inflated or imputed values where none should exist. Furthermore, we show that the proportion of missing values
had a strong impact on the accuracy of imputation, which affected the interpretation of the results. Our results suggest imputation
should be used with extreme caution even with modest levels of missing data and especially when the type of missingness is
unknown.

■ INTRODUCTION
The exponential growth of untargeted mass spectrometry
methods mirrors the growth in sequencing technologies and
has generated extraordinary new insights into human and
animal physiology,1,2 disease processes,3,4 microbial commun-
ities,5 disease biomarkers,6 and drug discovery.7 Making sense
of these large datasets, including spectral matching, statistical
analysis, and machine learning, requires mathematical and
statistical approaches to identify data patterns in noisy data to
understand the biology. Missing values are quite common in
large untargeted metabolomics datasets and can comprise up
to 50% of the dataset and affect as many as 80% of the
variables.8,9 There are both biological and technical reasons
that values may be absent. A metabolite in a sample may be
missing due to (1) an ion of a molecule being absent or below
the limit of detection; (2) technical issues such as ion
suppression;10,11 (3) variability in sample processing;12 (4)

variations in stability of molecules;13,14 or (5) differences in
ionization efficiencies.15

Missing values compromise the completeness of data which
undermines the reliability of both univariate and multivariate
statistical analyses such as fold-change analysis, t-tests, Analysis
of Variance (ANOVA), regression-based analyses, and
Principal Component Analysis (PCA).16 Additionally, missing
values result in the loss of critical biochemical information,
impeding the identification of patterns, biomarkers, and the
understanding of biological pathways and their interac-
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tions.17,18 Because many instances of missing values represent
false negatives, dozens of methods for imputing missing values
have been developed.19,20 While variable in their approaches,
imputation methods model missing data based on the
nonmissing values in the dataset. For instance, methods such
as k-Nearest Neighbors (kNN) and Random Forest (RF)
derive missing metabolite values using the values that exist for
that same metabolite in other samples. This suggests that the
amount of available data (or inversely the amount of missing
data, i.e., “missingness”) may have a strong impact on the
accuracy of imputation.
Another factor that could significantly impact the accuracy

of imputations is the type of missing data which, if incorrectly
assumed or modeled, could lead to inaccurate imputation
values.21 In the metabolomics data, researchers have identified
three primary classes of missing data: Missing Completely at
Random (MCAR), Missing at Random (MAR), and Missing
Not at Random (MNAR). Each mechanism has distinct
characteristics and implications for data analysis and
imputation methods.22,23 Data points are MCAR when the
probability of missing is the same for all observations. MCAR
data points are a random subset of the complete data, which
means that analyses performed on the observed data can be
unbiased. Some studies have shown that simple imputation
methods, such as minimum, mean, or median imputation, can
be appropriate in this case23−25; while others found that
constant value substitutions offered poor performance,
compared to more-sophisticated imputation approaches.26 In
the context of metabolomics, data points would be MCAR in
cases where some technical replicates detected signals, while
others did not. With simple imputation, when data points are
MCAR, median value substitution has previously been shown
to be more robust compared to mean value imputation, as it is
less sensitive to extreme outliers.27 Data are MAR when the
probability of missingness depends only on the observed data
and not on the missing data itself. An example of MAR data
within metabolomics would be cases where undetected signals
could be explained by the presence or absence of signals for
another metabolite (e.g., inability to deconvolute coeluting
compounds).28 When data are MAR, more-sophisticated
imputation methods are needed, such as multiple imputation
or maximum likelihood methods, that leverage the relation-
ships within the observed data to account for the
missingness.29 Data are MNAR when the probability of
missingness is related to external factors outside the features
within the dataset. The most common example of MNAR data
in metabolomics is the absence of signals at the limit of
detection (LOD). With LOD MNAR data, prior studies
employed minimum value substitution, or instrument LOD
substitution (if known).30,31 Other MNAR data could be due
to differences related to the sample type. MNAR imputation is
the most challenging, as it requires assumptions about the
unobserved data or external information to model the
missingness mechanism.32 In practice, it is very difficult to
distinguish MCAR and MAR,33 with some researchers
advocating for alternative viewpoints for missing data
altogether.34

An additional important aspect of metabolomics analysis is
the issue of compositionality. Metabolomics, especially
untargeted metabolomics, can have both compositional and
noncompositional character. In many fields, including
metabolomics, data may exist in a compositional form,
meaning that the data represent parts of a whole. Composi-

tional data are defined as constrained to sum to a fixed value
(e.g., 1% or 100%), making the values within one file
interdependent. In other words, if one value in a compositional
dataset increases, all of the other values must decrease, making
the values nonindependent (in technical terms, the data lie in a
simplex rather than in Euclidean space). Alleviating this
problem requires specialized transformations such as the
centered log-ratio (CLR), additive log-ratio (ALR), or
isometric log-ratio (ILR), which convert the compositional
data to real number space. Traditional statistical methods
assume that data points are independent and can vary freely,
but the inherent constraints of compositional data create
dependencies between the components, leading to potential
pitfalls in data interpretation, including spurious correlations
and misleading patterns.35

In untargeted metabolomics, the absolute value of the peak
area can reflect the concentration of an analyte present in the
sample. When not normalized to a fixed total, these values
exhibit a noncompositional character because they are
independent of the presence of other metabolites in the
analysis. However, the distinction between compositionality
and noncompositionality can sometimes be ambiguous, often
depending on how the data are processed and interpreted. For
instance, consider a fixed-volume plasma sample, where 100
metabolites are detected. In a different sample, the same 100
metabolites are present, along with a highly abundant drug. If
one normalizes each sample to 100%, which is a common
practice in untargeted metabolomics, all other metabolite
signals in the second sample are proportionally reduced due to
the presence of the drug. This normalization does not reflect a
true decrease in their absolute quantities, thus introducing a
compositional bias, despite the original concentrations
remaining unchanged. Another example of this complexity
arises from ion suppression, where the introduction of certain
molecules can hinder the detection of other metabolites. In this
scenario, the measured abundance of some metabolites may be
artificially lowered, complicating the interpretation of composi-
tional versus noncompositional data. Further complicating this
discussion are the structural versus observational zero values.
Structural zeros indicate inherent limits in what is present,
influencing the modeling approach and interpretation of
results, while observational zeros reflect gaps in instrument
sensitivity (peak detection settings) that can skew the
perceived composition and relationships among components.
Recognizing these impacts helps in the analysis and
interpretation of compositional studies.
While raw metabolomic data can comprise a mix of

compositional and noncompositional values, metabolite data
becomes truly compositional after Total Ion Count (TIC)
normalization, also known as relative abundance normalization.
TIC normalization is commonly used with metabolomics
datasets, particularly in mass-spectrometry based studies.36,37

TIC normalization corrects for variations in overall signal
intensity that may arise from differences in sample loading,
ionization efficiency, or instrumental sensitivity during data
acquisition.38 These variations can introduce significant bias
and obscure the true biological differences between samples.
TIC normalization mitigates these technical artifacts by scaling
the signal intensities of individual metabolites relative to the
total ion current.39 Critically, TIC normalization adjusts the
raw signal intensities of metabolites relative to the total ion
current of the sample, effectively converting the data to a
composition. TIC normalization ensures that the metabolite
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abundances are expressed as relative proportions of the total
signal, making them comparable across different samples.
Understanding and applying compositional data analysis

(CoDA) in metabolomics are critical because they allow for
more-accurate interpretation of the biological significance of
relative metabolite abundances. By recognizing the composi-
tional nature of TIC-normalized data, researchers can apply
appropriate transformations, such as the CLR, to analyze the
data without introducing biases or misinterpretations. The
CLR transformation40 is a straightforward CoDA trans-
formation that can be directly used in numerous statistical
analyses and machine learning approaches, and is frequent
applied in the fields of geology, molecular biology, and

microbial ecology.41−43 CLR transformation addresses the
nonindependence issue of compositional data by converting
the data into real number space.43 With the CLR trans-
formation, each data point in a sample is replaced by the log-
ratio of that sample value to the geometric mean, a form of
averaging of the data from that sample, ensuring that all data
points are centered around a mutual reference point. Another
useful application of the CLR transformation for metabolomics
arises in its ability to facilitate comparative data analysis.
Researchers are increasingly combining data from multiple
‘omics approaches (metagenomics, metabolomics, transcrip-
tomics) to determine potential associations among them.
Often, however, the distributions and scales of the values

Figure 1. PCA plots for different transformations on targeted metabolomics data: (A) PCA plot for raw data, (B) PCA plot for TIC normalized
data, (C) PCA plot for TIC-CLR transformed data (pseudocount = 1 × 10−12), and (D) PCA plot for TIC-RCLR transformed data, followed by
minimum value imputation.
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among these datasets can be remarkably different, and many
statistical tests assume or require similar distributions across
data. Using a common transformation ensures that all the
datasets to be compared or integrated have a similar
distribution and scale for comparisons.
In this study, we examined the effects of missing values on

imputation using two of the most commonly used methods,
namely, k-Nearest Neighbors (kNN) and Random Forest (RF)
using two unsimulated metabolomic datasets. The kNN and
RF methods are frequently used in the literature and are often
included in software packages. They have also been the most
extensively validated in prior studies using simulated data.20

While there are dozens of methods available for imputing
data,44 our goal was not to compare and contrast all the
different imputation approaches. Rather, the focus of this
article was on the general impact of missing values and
compositional data analysis on imputation. Specifically, our
goals were to determine (1) how overall levels of missing data
generally impact imputation and analytic interpretation of
metabolomics data; and (2) how these imputation methods
perform with very different types of missing data, namely
MNAR and MCAR. Analyses with and without imputation
were performed using raw data, TIC normalized data, and two
types of CoDA transformation, CLR and the Robust CLR

Figure 2. PCA plots of the targeted metabolomics data using machine learning imputations and two different log-ratio transformation methods.
(A) TIC-RCLR transformed data, followed by kNN imputation; (B) TIC-RCLR transformed data, followed by RF imputation; (C) kNN
imputation on TIC normalized data, followed by CLR transformation; and (D) RF imputation on TIC normalized data, followed by CLR
transformation.
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(RCLR) transformation,45 and we examined the impacts of
imputation at the whole sample-level and at the level of
individual metabolites. Our results showed that both the
amount and type of missing data had a profound impact on
imputation and downstream interpretation, particularly at the
level of individual metabolites, and caution against the blind
use of imputation methods without a complete understanding
of the types of missing data inherent in a dataset.

■ RESULTS
Several studies have already evaluated the accuracy of various
imputation methods on untargeted metabolomics analysis.
These studies largely rely on simulated datasets and with low
numbers of missing values. However, most untargeted
metabolomics data have a lot of missing values, and thus the
results should be evaluated with few to large numbers of
missing values. Here, we explore the effectiveness of commonly
used imputation methods on two unsimulated datasets. In
particular, we assessed how variation between samples changes,
examined the effects of imputations when data are MCAR vs
MNAR missing at the metabolite level, and evaluated the
accuracy of imputations when missing values are introduced
randomly and the true value is known. The first dataset was
targeted, which included metabolites that were spiked into the
samples at fixed concentrations along a logarithmic gradient.
The second NIST dataset was untargeted and examined the
metabolite profiles of homogenized human fecal samples which
had either a vegetarian or omnivorous diet. The effect of the
different imputations was assessed in conjunction with
common normalization/transformation methods, such as
TIC normalization, CLR transformation, and RCLR trans-
formation.
How Do Compositional Transformations and Impu-

tations Affect Targeted Metabolomics Data Where Data

is MNAR? The first dataset we examined had data which was
MNAR, because it included metabolites spiked into an
untargeted dataset at known concentrations (i.e., not random)
that should be detected following the concentration gradient.
However, some signals were not detected at the lowest
concentrations for a subset of the metabolites due to the limits
of detection. Spiked samples are commonly used as internal
standards and should not have missing signals, giving
motivation to impute these missing values, because we can
guarantee the presence of the metabolite at a given
concentration. The use of compositional transformations on
the TIC normalized data is appropriate because all of the
individual ion counts are divided by the TIC, which sums to a
fixed value (1.0 or 100%). While compositional analysis of the
TIC-normalized data is clearly warranted, we also recognize
that researchers directly transform and impute the raw data,
often with similar results. Therefore, we have repeated the
CoDA below with the raw data and included these results as
supplemental data for comparison. For the CoDA analysis, we
applied CLR and the newer RCLR transformations. Note, with
CLR zeros are replaced prior to transformation with a very
small number, while with RCLR zeros are ignored during the
transformation but can be replaced with small numbers for
downstream analyses. (Zero handling is necessary because the
CLR and RCLR transforms both apply the logarithm function,
which is undefined at 0.)
To assess the impacts of normalization and compositional

transformation on MNAR data, we compared the PCA
clustering of samples at increasing concentrations without
imputation. Figures 1A−D show PCA analyses for the targeted
dataset with no transformations (raw data), TIC normal-
ization, TIC-CLR transformation (TIC normalization followed
by CLR), and TIC-RCLR transformation (TIC normalization
followed by RCLR) without machine learning imputations (0

Figure 3. Boxplots of transformations and imputations for aspartame, where the two lowest concentration thresholds have all missing data. (A)
Raw data plotted on a natural log scale. (B) TIC normalized data plotted on a natural logarithmic scale. (C) TIC-CLR transformed data
(pseudocount = 1 × 10−12). (D) TIC-RCLR transformed data, followed by minimum value imputation. (E) TIC-RCLR transformed data, followed
by kNN imputation. (F) TIC-RCLR transformed data, followed by RF imputation.
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values substituted with minimum value following trans-
formation). The total variation explained by the different
methods was similar. PCA for TIC-CLR transformed data
explained the most variation with the first two principal
components (60.76%; Figure 1C), while the PCA for the raw
data captured the least (53.78%; Figure 1A). PCA for TIC-
CLR transformed data captured less variation on the first
principal component and more variation on the second
principal component compared with other methods (Figure
1C). Clustering of replicates within concentration conditions
was similar across the different methods, with the exception of
the TIC-CLR transformed data, which contained different
clustering patterns compared to those of the other three
approaches (Figure 1C). It is worth noting that selecting
varying values of pseudocounts for the TIC-CLR trans-
formation produces different clustering of samples. However,
since the TIC normalized data contains many proportions with
very small values, a pseudocount smaller than all TIC
proportions was appropriate (1 × 10−12). The same analysis
was performed after transforming the raw data instead of the
TIC-normalized data, which produced similar results, although
the CLR explained less of the variation in the first two principal
components compared to the TIC-CLR transformation
(Figure S1).
To determine the effects of imputation methods on PCA

clustering and visualization, we then applied two commonly
used imputation methods: kNN and RF. We compared cases
where TIC-normalized data was first imputed then CLR
transformed versus RCLR-transforming the TIC-normalized
data then imputing missing values for the unaffected 0s. Since
imputation can be performed either before or after trans-
formation, we examined both possibilities. Figures 2A−D
shows PCA analyses for the targeted dataset using machine
learning imputations for missing data with TIC-RCLR and

TIC-CLR transformations. Since CLR transformation does not
accept missing values (one cannot compute log(0)), missing
value imputation was performed on TIC normalized data prior
to CLR transformation. For the TIC-RCLR transformation,
imputation was performed after the transformation, because
the missing/0 values are ignored during the process. Similar to
the results in Figure 1, there were minimal differences in the
total variation explained between the different approaches.
PCA for TIC normalization with kNN imputation followed by
CLR transformation explained the most variation with the first
two principal components (43.02%; Figure 2C), while RF
imputation on TIC normalized data followed by CLR
transformation captured the least (41.12%; Figure 2D).
Clustering of replicates within concentration conditions was
also highly similar, and the variation explained using the
imputed data was consistently lower than the nonimputed
analyses (Figure 1). Similar results were found with trans-
formations performed on the raw data (Figure S2).
To determine the effects of imputation methods on

individual MNAR metabolite abundances, we determined the
effects of kNN and RF missing-value imputations to non-
imputed values on individual metabolites with different levels
of missingness. Figures 3A−F show boxplots for a metabolite-
level comparison of transformations and imputations where
data points are MNAR-type missing. All data points were
missing for these spiked-in standards at the two lowest
concentrations. TIC-CLR transformation preserved the log-
scale proportional relationship between data points in TIC-
normalized data, because the data are converted to log-ratios,
relative to the geometric mean (Figures 3B and 3C). The TIC-
CLR transformation was more similar to the TIC-normalized
data, compared with the TIC-RCLR transformation with
minimum value imputation (Figure 3D), although both
preserved the relationships between the different concentration

Figure 4. Boxplots of transformations and imputations for estrone, which is missing signals for the four lowest concentrations. (A) Raw data plotted
on a natural log scale. (B) TIC normalized data plotted on a natural log scale. (C) TIC-CLR transformed data (pseudocount = 1 × 10−12). (D)
TIC-RCLR transformed data, followed by minimum value imputation. (E) TIC-RCLR transformed data, followed by kNN imputation. (F) TIC-
RCLR transformed data, followed by RF imputation.
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standards. Following the TIC-RCLR transformation, both
kNN and RF imputations failed to effectively impute missing
values below the limit of detection (Figures 3E and Figure 3F).
Both kNN and RF overestimated the missing data, with a
larger overestimation using RF compared with kNN
imputation (Figure 3F). Nearly identical results were
determined when transformations were performed using raw
data (Figure S3).
Figures 4A−F show another metabolite-level comparison

with MNAR-type missing data. In this example, an additional
two orders of magnitude are missing. Similar to Figure 3, the
TIC-RCLR transformation followed by kNN and RF
imputations failed to effectively impute missing values below
the limit of detection (Figures 4E and 4F). RF overestimated
missing values more than kNN imputation (Figure 4E and 4F).
Nearly identical results were determined when transformations
were performed using raw data (Figure S4).
Figures 5A−D show model-based (logistic regression)

imputation to handle MNAR-type missing data points. On
the log scale, metabolites that had detected signals for all
concentrations exhibited a linear relationship (Figure 5B). To
impute MNAR missing values, a logistic regression model was
fitted using only existing data points and then used to impute
missing values (Figure 5C). Following logistic regression
model-based imputation, imputed values conform to the
expected pattern for data points with order of magnitude
concentration differences (Figure 5D).
How Do Compositional Transformations and Impu-

tations Affect Untargeted Metabolomics Data, Which
Are Both MCAR and MNAR? The second dataset was a
metabolomics analysis of subjects on a vegan or omnivore
diet.46 The dataset had missing values that were both MCAR
and MNAR. These MCAR missing values had no discernible

pattern to their missingness, which might have been a result of
issues with sample handling or detection. We also found
missing values that were MNAR because they were present in
all of the omnivore diet samples but absent in all of the
vegetarian diet samples (and vice versa). We expect many
environmental datasets will have some combination of MCAR
and MNAR missing values, and our results show that the type
of missing data has a profound impact on imputation accuracy.
To assess the impacts of normalization and compositional

transformation on MCAR/MNAR data, we compared PCA
clustering of samples within the different diets without
machine learning imputations (Figures 6A−D). PCA for raw
data explained the most variation in the first two principal
components (79.92%; Figure 6A), while PCA for the TIC-
RCLR transformed data with minimum value imputation
captured the least (70.57%; Figure 6D). Clustering of
replicates within conditions was similar; four discrete clusters
were observed with raw data, TIC normalized data, and TIC-
RCLR transformed data with minimum value imputation
(Figures 6A, 6B, 6D). PCA for TIC-CLR transformed data
failed to resolve the clustering of samples with the same
resolution, only resolving the separate diets into two discrete
groups (Figure 6C). Nearly identical results were determined
when transformations were performed using raw data (Figure
S5).
We then determined the effects of kNN and RF imputation

methods on PCA clustering and visualization. Figures 7A−D
show PCA analyses for the untargeted dataset using machine
learning imputations on missing data with TIC-RCLR and
TIC-CLR transformations. The total variation captured among
the different methods was very similar. PCA for TIC-
normalized data with kNN imputation followed by CLR
transformation captured the most variation on the first two

Figure 5. Regression-based modeling approach for handling missing values in targeted metabolomics data which conform to the MNAR-type
pattern. (A) Logarithmic regression for a C17 sphingosine, which had detected signals at all concentrations and for all replicates (TIC-RCLR-
transformed data). (B) Boxplot for C17 sphingosine. (C) Logarithmic regression and imputation for aspartame, which had missing signals at 2
lowest concentrations (10 and 100 pM) for all replicates (TIC-RCLR transformed data). (D) Boxplot assessing logarithmic regression imputation,
following TIC-RCLR transformation for aspartame.
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principal components (69.77%; Figure 7C), while RF
imputation on TIC-normalized data followed by CLR
transformation captured the least (68.34%; Figure 7D).
Clustering of replicates within concentration conditions was
highly similar in all four analyses. While the difference is
smaller, we note that the variance explained using the imputed
data was still consistently lower than the variance explained
using the nonimputed data (Figure 6). Similar results were
determined when transformations were performed using raw
data (Figure S6).
To test the hypothesis that imputation accuracy increases as

the proportion of missing data across features decreases, we

binned the percentage of missing data within a feature into
three discrete categories: features that had <10% missing
values, features that had 50% missing values, and features that
had >90% missing values. For each threshold of missing data,
we substituted another missing value for an entry that had a
known value and assessed whether the accuracy of the ML-
based imputation methods improved. Figures 8A−D shows
distance comparisons between the true value and imputed
value for artificially produced missing values at different
thresholds of missing data within a feature for untargeted
metabolomics data. Whether missing data is imputed prior to
transformation or after, the absolute distance between true

Figure 6. PCA plots for normalizations on untargeted metabolomics data with no machine-learning-based imputations. (A) PCA plot for raw data.
(B) PCA plot for TIC-normalized data (pseudocount = 1 × 10−12). (C) PCA plot for TIC-CLR transformed data. (D) PCA plot for TIC-RCLR
transformed data, followed by minimum value imputation for missing values.
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value and ML-imputed imputed value varies inversely as the
percentage of detected signals increases across samples for a
metabolite.
Finally, to determine the effects of the imputation methods

on the untargeted MCAR/MNAR metabolite abundances, we
performed kNN and RF missing-value imputations on
individual metabolites with different proportions of missing
data. Figures 9A−F shows a metabolite-level comparison of
transformations and imputations where data points are MCAR-
type missing within the untargeted dataset using a metabolite
with >90% detected signal across all samples. TIC-CLR
transformation preserved the proportional relationship be-

tween data points observed in TIC-normalized data (Figures
9B and 9C). TIC-RCLR transformation followed by kNN and
RF imputations yielded similar results; both methods imputed
missing values close to the detected signals (Figures 9E and
9F). Nearly identical results were determined when trans-
formations were performed using raw data (Figure S7).
Figures 10A−F show a metabolite-level comparison of

transformations and imputations where data points are MCAR-
type missing within the untargeted dataset; the metabolite had
50% detected and 50% undetected signals across all samples,
with missing values in both diet groups. TIC-RCLR trans-
formation followed by minimum value imputation preserved

Figure 7. PCA plots of the untargeted metabolomics data using machine learning imputations and two different log-ratio transformation methods.
(A) TIC-RCLR transformed data followed by kNN imputation. (B) TIC-RCLR transformed data followed by RF imputation. (C) kNN imputation
on TIC normalized data followed by CLR transformation. (D) RF imputation on TIC normalized data, followed by CLR transformation.
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Figure 8. Distance comparisons between true value and imputed value applied to nontransformed untargeted metabolomics data and RCLR
transformed data. (A) kNN imputation for missing values on raw data. (B) TIC-RCLR transformation on raw data followed by kNN imputation for
missing values. (C) RF imputation for missing values on raw data. (D) TIC-RCLR transformation on raw data, followed by RF imputation for
missing values.

Figure 9. Boxplots of transformations and imputations for a metabolite (ID No. 3736) with >90% detected signals across all samples in the
untargeted dataset. (A) Raw data plotted on a natural log scale. (B) TIC normalized data plotted on a natural log scale. (C) TIC-CLR transformed
data (pseudocount = 1 × 10−12). (D) TIC-RCLR transformed data, followed by minimum value imputation. (E) TIC-RCLR transformed data,
followed by kNN imputation. (F) TIC-RCLR transformed data, followed by RF imputation.
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the proportional relationship between data points observed in
the TIC normalized data (Figures 10B and 10D), while TIC-

CLR transformation did not (Figure 10C) due to centering
data points around the sample-specific geometric mean and

Figure 10. Boxplots of transformations and imputations for a metabolite (ID No. 69) with 50% detected signals, 50% missing signals across all
samples in the untargeted dataset. (A) Raw data plotted on a natural log scale. (B) TIC normalized data plotted on a natural log scale. (C) TIC-
CLR transformed data (pseudocount = 1 × 10−12). (D) TIC-RCLR transformed data, followed by minimum value imputation. (E) TIC-RCLR
transformed data, followed by kNN imputation. (F) TIC-RCLR transformed data, followed by RF imputation.

Figure 11. Boxplots of transformations and imputations for a metabolite (ID No. 336) with 50% detected signals, 50% missing signals across all
samples in the untargeted dataset. (A) Raw data plotted on a natural log scale. (B) TIC normalized data plotted on a natural log scale. (C) TIC-
CLR transformed data (pseudocount = 1 × 10−12). (D) TIC-RCLR transformed data, followed by minimum value imputation. (E) TIC-RCLR
transformed data, followed by kNN imputation. (F) TIC-RCLR transformed data, followed by RF imputation.
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bias introduced by 0-substitution with pseudocounts during
transformation. TIC-RCLR transformation followed by kNN
and RF imputation gave similar results; both methods imputed
missing values close to the detected signals (Figures 10E and
10F). Nearly identical results were determined when trans-
formations were performed using raw data (Figure S8).
Figures 11A−F show a metabolite-level comparison of

transformations and imputations where data points are
MNAR-type missing within the untargeted dataset. While the
previous metabolites were MCAR, this example showcases
MNAR data in the untargeted context, because the metabolite
had 50% detected and 50% undetected signals across all
samples; however, undetected signals were only in the
vegetarian diet samples. Due to the inherent nature of the
CLR transformation, it is inevitable to introduce some bias
with the transformation attributed to the pseudocount; even
with a very small pseudocount (1 × 10−12), interpretations
could lead to misleading results because of division by the
geometric mean of each sample during the transformation
(Figure 11C). TIC-RCLR transformation followed by
minimum value imputation preserved the proportional
relationship between data points observed in the TIC-
normalized data (Figures 11B and 11D) while TIC-CLR
transformation did not (Figure 11C). Both kNN and RF
imputations produced completely fabricated results, because of
the fact that there was no data to impute from within the same
group of individuals (vegetarian)�the only detected signals
for the metabolite all came from samples which had an
omnivore diet (Figures 11E and 11F). Naively, the imputations
give the illusion that the metabolite profile was similar among
individuals in both diets. However, the metabolite was
completely undetectable in individuals on a vegetarian diet.

Nearly identical results were determined when transformations
were performed using raw data (Figure S9).
Figures 12A−F show a metabolite-level comparison of

transformations and imputations where the metabolite had
<10% detected signals across all samples. TIC-RCLR trans-
formation followed by minimum value imputation preserved
the proportional relationship between data points observed in
the TIC-normalized data (Figures 12B and 12D), while TIC-
CLR transformation did not (Figure 12C). TIC-RCLR
transformation followed by kNN and RF imputation gave
different results; RF imputation consistently had greater
imputed values when compared with kNN imputation, a
similar finding when compared with the targeted dataset
(Figures 12E and 12F). Both RF and kNN imputed missing
values, giving the illusion that there were discernible
differences between diets; however, this metabolite was almost
completely undetectable across all samples. Nearly identical
results were determined when transformations were performed
using raw data (Figure S10).
Given the clear impact of missing data on imputation

accuracy in our unsimulated targeted and untargeted datasets,
we directly explored the impacts of different levels of
missingness on MCAR imputation accuracy. Table 1
summarizes a comparison of RF- and kNN-based imputations
where data are MCAR. RF imputation consistently out-
performed kNN imputation, in terms of accuracy assessed by
RMSE, concordant with previous publications.27,47 In both
cases, the accuracy declines as the percentage of missing data
increases.

Figure 12. Boxplots of transformations and imputations for a metabolite <10% detected signals across all samples in the untargeted dataset. (A)
Raw data plotted on a natural log scale. (B) TIC normalized data plotted on a natural logarithmic scale. (C) TIC-CLR transformed data
(pseudocount = 1 × 10−12). (D) TIC-RCLR transformed data followed by a minimum value imputation. (E) TIC-RCLR transformed data,
followed by kNN imputation. (F) TIC-RCLR transformed data, followed by RF imputation.
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■ DISCUSSION
In this study, we analyzed the effects of imputation on
metabolomics data using several widely recognized methods:
simple substitution, k-Nearest Neighbors, and Random Forest.
The primary objective was to understand how these
imputation techniques were affected by levels of missing data
and by the types of missing data, e.g., MCAR and MNAR. Our
findings showed that both kNN and RF imputation methods
worked well at low proportions of missing data across samples
and when the data were MCAR. We also showed that
compositional data methods performed well across datasets,
with little evidence of distortion compared to raw and TIC-
normalized methods. However, the accuracy of kNN and RF
imputations declined markedly as the proportion of missing
data increased in both MCAR and MNAR data and both
performed especially poorly with MNAR data. At very high
levels of missing data and when data are MNAR, kNN and RF
imputations falsely imputed differences in metabolite abun-
dance between samples that did not exist in the real data. The
effect of overestimation was particularly dramatic with
individual metabolites, but the effect was also observed in
the PCA analyses of both targeted and untargeted datasets
where imputation resulted in a loss of explanatory power. With
all methods, it is important to note that imputation often
overestimated the abundance of a molecule’s signal if it is truly
absent from the data, even in the case of minimum value
imputation. In such cases, previous studies have recommended
stratified imputation (employing prior knowledge to avoid
imputation for true zero signals, while imputing values above
predefined thresholds), or using combined imputation
approaches, employing LOD imputation (minimum-value or
instrument LOD), in tandem with multivariate imputations,
such as RF.31

Our finding that higher levels of missingness in MCAR data
corresponded to poorer imputation accuracy makes sense
considering that these ML methods train on the existing values
in the dataset. The more data available for training, the more
accurate is the imputation. In some cases, we discovered that
the methods were imputing large numbers of values after
training on only a single existing data point. While we only
tested the effect of missing data with two of the many dozens
of available imputation methods, similar problems likely plague
any imputation approach: the fewer the values available for
training or estimation, the lower the imputation accuracy. Our
discovery that imputation methods performed considerably
worse with MNAR also makes sense when we consider that the
underlying assumptions of these methods is that the missing
data have the same distribution as the nonmissing data. Indeed,
the imputation methods were highly accurate when we
accurately modeled the MNAR data for the targeted dataset
with a logistic regression model. Identifying the pattern of

MNAR in the untargeted dataset also showed how imputation
assumptions were clearly violated, as they assumed the pattern
of missingness was the same for both omnivore and vegetarian
samples.
While imputation techniques offer a seemingly convenient

solution for handling missing data, they present several
significant drawbacks that warrant cautious consideration.
The variability inherent in different imputation approaches
introduces a degree of uncertainty that can undermine the
reliability of the research findings. Imputations are fundamen-
tally based on the existing data. The less data available for
imputing, the worse the imputations. As a result, the imputed
values might not accurately reflect the true underlying patterns,
thereby compromising the integrity of the analysis. This is
particularly problematic in cases where the missing data
mechanism is not fully understood or is incorrectly assumed to
be missing at random (MCAR or MAR) when it is not
(MNAR), or vice versa. Our results with real datasets show
that the erroneous assumption of the missing data mechanism
may lead to inappropriate imputation methods, further
exacerbating inaccuracies in the dataset. If one is sure of the
classification of missingness, such as with MNAR with log-scale
spikes in standards, then an appropriate imputation method
can be applied with confidence. However, in many untargeted
datasets, the type of missingness may be unclear or even mixed,
suggesting great caution should be used with the blind use of
imputation methods.
Imputation may work well for data where most of the signals

are shared. Such experimental designs might include analysis of
organisms where a single gene is deleted, or a single new
member is added to a panel of bacteria, or datasets such as
plasma metabolites where the same metabolites are observed
very frequently (e.g., 50%−100%) across the samples. These
study designs tend to reflect the central core metabolism of the
samples that are being investigated. However, as factors like
diet, microbiome variability, environmental exposures, and
medication use differ among individuals, many metabolites
may be present infrequently�often in less than 10% of
samples within a cohort. Thus, one may have to make choices
about whether to perform data imputation. If one filters the
data for only common features, as is often done in statistics for
untargeted metabolomics data, it is imperative to be trans-
parent and report which data were included and which were
excluded. This transparency helps ensure that the analysis
remains interpretable and that potential biases are clearly
communicated.

■ CONCLUSION
Imputation methods rely on random processes, model-based
predictions, or machine learning techniques. Thus, it is
possible that different researchers unknowningly might
produce different imputed datasets from the same original
data, leading to variability in results. This lack of reproduci-
bility has the potential to undermine the credibility of the
research. Depending on the amount of missing data, this could
make results difficult to validate or build upon in later work. A
prime example of this is demonstrated with machine learning
approaches, which typically rely on a pseudorandom number
to seed the results (i.e., set.seed() in R and random_state in
Python) and be reproducible. Changing these numbers could
lead to vastly different results, particularly in the case of RF
imputation and other tree-based methods.

Table 1. Normalized Root Mean Square Error Assessment
of RF and kNN Imputations at Different Thresholds of
Randomly Assigned Missing Data for Untargeted
Metabolomics

% missing
NRMSE: TIC-RCLR,
followed by RF

NRMSE: TIC-RCLR,
followed by kNN

20 0.3405 0.3701
40 0.3503 0.3864
60 0.3678 0.4071
80 0.4136 0.5284
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By introducing artificial data into the analysis, researchers
risk presenting findings that are not truly reflective of the real-
world phenomena that they aim to study. Therefore, it is
advisible to consider alternative strategies for handling missing
data, such as robust statistical methods that can accommodate
missing data without the need for imputation, where possible
designing studies that minimize the occurrence of missing data
or have increased number of biological/technical replicates,
and compositional data transformations. In light of these
considerations, it is prudent to approach the use of imputations
with great caution.48 Ensuring the validity, reliability, and
reproducibility of research should take precedence, guiding
researchers toward more transparent and scientifically sound
methods for managing missing data.

■ METHODS
Tandem Mass Spectrometry Analysis. We used two

publicly available untargeted metabolomics datasets in our
analyses. The details of data collection for each dataset are
presented below.

Targeted Dataset. Dataset 1 was collected as described in
thew work of Melnik et al.49 The dataset contains a mixture of
41 standards spiked in at equimolar concentrations to 10 uM
fecal extract. Standards were added across a concentration
gradient of 10, 100, 1, 10, 100, 1, and 10 uM with three
replicates per concentration. Briefly, MS/MS data was acquired
in positive mode on a Q Exactive Orbitrap (Thermo Fisher
Scientific, Waltham, MA) using data-dependent acquisition.
Samples were separated using a Vanquish UPLC instrument
(Thermo Fisher Scientific, Waltham, MA) on a 100 × 2.1 mm
Kinetix 1.7 μM C18 column (Phenomenex, Torrance, CA)
using the following buffers. Buffer A was water (J.T. Baker, LC-
MS grade) with 0.1% formic acid (Thermo Fisher Scientific,
Optima LC/MS). Buffer B was acetonitrile (J.T. Baker, LC-MS
grade) with 0.1% formic acid (Fisher Scientific, Optima LC/
MS). Flow rate was set to 0.5 mL/min with a gradient of 0−1
min 5% B, 1−8 min 100% B, 8−10.9 min 100% B, 10.9−11
min 5% A, and 11−12 min 5% B. Mass range was set to 100−
1500 m/z, MS1 scan level resolution was set to 35K and MS2
scan resolution was set to 17.5K. Data are deposited in
MassIVE (www.massive.ucsd.edu) under accession
MSV000079760. The targeted dataset contained 21 samples,
1925 metabolic features (33 of which were internal standards),
with 6551 (16.2%) missing data points (0, no detected signal).

Untargeted Dataset. Dataset 2 was collected from NIST
reference grade test materials (RGTM) containing homogen-
ized fecal matter from subjects with vegan or omnivore diets
(RGTM 10162, 10171, 10172, and 10173). Samples were
collected from 18 individuals (9 vegan, 9 omnivores) with
three technical replicates per individual. MS/MS data was
acquired in positive mode on a Q Exactive Orbitrap (Thermo
Fisher Scientific, Waltham, MA) using data-dependent
acquisition. The untargeted dataset contained 54 samples
and 42,44 metabolites, with 32,675 (14.3%) missing data
points (0, no detected signal). Data are deposited in MassIVE
(www.massive.ucsd.edu), under accession MSV000086989.

Data Processing. Data processing was performed using the
GNPS analysis ecosystem and MZmine3 (3.9.0).50 Raw data
were first converted to .mzML, using Proteowizard MSconvert
(3.0.22287−170037b), before performing feature finding in
MZMine3.51 All feature finding parameters are included in the
Supporting Information. Library annotation and molecular
networking were performed using GNPS for Dataset 1 and can

be accessed via the following link: (https://gnps.ucsd.edu/
P r o t e o S A F e / s t a t u s . j s p ? t a s k =
94d795a6bfeb411a8f36a43b12b95eea)
Normalizations and Transformations. Total Ion Count

Normalization. TIC normalization (TICN) was carried out by
summation of all signals for each metabolite (si)�Total Ion
Count (TIC)�within a sample (s) and dividing each
metabolite’s signal strength by the resulting sum.
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Centered Log-Ratio Transformation. The centered log-
ratio (CLR) transformation transforms compositional data into
real number space by taking the logarithm of each sample’s
component value and dividing by the geometric mean (GM) of
all components, thereby eliminating the constant-sum
constraint and making the data suitable for multivariate
analysis. The generalized formula for the CLR transformation
is shown below where s is a sample vector, si is a component
(metabolite signal) of the sample vector, CLR(si) is an
individual log ratio for a component of the vector, and CLR(s)
is the transformed vector:

s s

s
s

s

s
s

s
s

s
s

s

GM( )

CLR( ) log
GM( )

CLR( ) log
GM( )

, log
GM( )

, ..., log
GM( )

i

n

i

i
i

n

1

1 2

n=

=

=

=

i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

In the context of the metabolomics datasets, the raw
metabolite signals are not inherently compositional. Before
performing the CLR transformation for the datasets, each
sample was first TIC-normalized to convert it to compositional
form; then the CLR transformation was applied to each sample
vector to yield a final TIC-CLR transformation. CLR
calculations were performed using the decostand(x, method
= “clr”, pseudocount = 1 × 10−12) function within the vegan R
library.52

Robust Centered Log-Ratio Transformation. The robust
centered log ratio (RCLR) transformation is an extension of
the traditional CLR transformation, which allows for the
presence of zeros within datasets. The RCLR transformation
ignores zero values and divides all nonzero values by the
geometric mean of the observed features, followed by a log
transformation on the nonzero log ratios; the zero values
remain unchanged. After the transformation, the unchanged
zero values must be handled. The RCLR transformation is
calculated similarly to the CLR transformation, with the caveat
that 0 and missing signals are not included in the calculation:
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Similar to the CLR transformation, each sample was first
TIC-normalized to convert it to compositional form, and then
the RCLR transformation was applied to each sample vector to
yield a final TIC-RCLR transformation. RCLR calculations
were performed using the decostand(x, method = “rclr”)
function within the vegan R library.

Proof That Compositional Transformation on TIC-
Normalized Data Removes Compositionality. Letting the
vector of data be denoted as x̂, we consider be defined as
follows:

x x x x, , ..., m1 2= { }

We say that x̂ is a vector in m and denote the ith entry of x̂
as xi. We define the TIC-normalized data vector x̂N by its ith
entry as
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Each entry is the corresponding entry in the non-normalized
vector divided by the sum of all entries. This normalization can
be shown to provide compositional data because the sum of
the elements of the normalized vector, S(x̂N), can be written as
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We define the CLR transformation of the TIC-normalized
vector by its ith entry as
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Similarly, the CLR transformation of the un-normalized data
vector by its ith entry is defined as
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We can expand the CLR transform of the normalized vector
in the following manner:
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A similar expansion results in the ith entry of the CLR
transform of the un-normalized vector being written as follows:
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We can see that the two different treatments of the data vector
only differ by the constant term xlog( )i

m
i
N

1= and are notably
similar in terms of interpretation as noted in the main body
text. We then observe the sum of the TIC-CLR transformed
data vector to determine if the compositionality has been
removed:
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We find that the resulting sum is equal to the negative
logarithm of the sum of entries of the original vector multiplied
by the size of the vector, thereby showing that the entries do
not sum to a fixed value that is not dependent on the data and,
thus, the data lacks compositionality.
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Minimum Value Imputations. Minimum value imputations
were carried out for RCLR transformations, substituting
nontransformed 0/missing signal values with the minimum
value of the TIC-RCLR transformed feature table.

k-Nearest Neighbors Imputations. The k-Nearest Neigh-
bors imputations were carried out with the R package VIM,53

using the kNN function. The kNN function uses the Gower
Distance to calculate similarity between samples/variables, as
the method allows for mixed data types. In the case of purely
quantitative data types (used in this study), the Gower
Distance calculations employ only the Manhattan Distance.
The kNN method will raise an error if any features
(metabolites) contain entirely missing values. The method
arguments used were k = 3 (three nearest neighbors), numFun
= mean (averages the value of the three nearest neighbors),
useImputedDist = FALSE (does not use imputed values for
subsequent distance calculations), and default values for all
other arguments.

Random Forests Imputations. The Random Forests
imputations were generated using the R package missForest,54

with the self-named function missForest(). The parameters
used were 10 for maxiter (maximum number of iterations if
convergence has not yet been reached), 100 for ntree (number
of trees to grow in each forest), and default values for all other
arguments.
The general steps to the iterative algorithm are (imputations

are made in order for samples/variables with the least amount
of missing values, moving toward samples/variables with more
missing values):
(1) Initialize the imputation process by making initial

guesses for missing values with the mean of the matrix.
(2) For each sample/variable with missing values, a random

forest is trained using other samples/variables as
predictors; the training is done only on observed values.

(3) The trained random forests model predicts the missing
values for the sample/variable.

(4) The missing values for the sample/variable are updated
with each iteration.

(5) The process is repeated iteratively until the imputed
values reach convergence (or a predefined number of
iterations is specified).

(6) After convergence (or maximum iterations), the
imputed dataset is returned.

Details of the full algorithm are specified in the source
publication.
Targeted Metabolomics Dataset Methods. To assess

the effects of machine learning imputations and model-based
imputation when the missing mechanism is MNAR (data are
missing systematically at the lowest concentration/at the limit
of detection), the targeted dataset was utilized. This dataset
contained 41 internal standard metabolites which were spiked-
in at fixed concentrations of 10 pM, 100 pM, 1 nM, 10 nM,
and 100 nM. For machine learning imputations, all missing
values were imputed with both kNN and RF with the
parameters discussed above. For modeling-based imputations,
a logistic regression was fit to the detected data and then used
to predict values for missing data.
Untargeted Metabolomics Dataset Methods. The

effectiveness of machine-learning-based imputations for
MCAR-type and MNAR-type data was assessed using the
untargeted dataset. To directly compare the performance of RF
and kNN imputations, the dataset was TIC-RCLR trans-

formed, then missing values were randomly assigned at 20%,
40%, 60%, and 80% intervals using the prodNA() function
within the missForest package. Each dataset with missing
values at the different intervals was imputed separately, then
imputation performance was assessed by normalized root-
mean-square error (NRMSE) with the missForest function
nrmse(), which accepts the imputed dataset, the dataset with
missing (NA) values, and the true dataset (TIC-RCLR
transformed, no missing/imputed values) as arguments.
Metabolite-level imputation accuracy was also assessed by
absolute distance between true value and imputed value at
three discrete intervals: metabolites which had ≤10% detected
signals across all samples, metabolites with 50% detected
signals across all samples, and metabolites which had ≥90%
detected signals across all samples. Correlation was determined
with cor.test(method = “pearson”).
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Nothias, L.-F.; Wang, M.; Oresǐc,̌ M.; Weng, J.-K.; Böcker, S.;
Jeibmann, A.; Hayen, H.; Karst, U.; Dorrestein, P. C.; Petras, D.; Du,
X.; Pluskal, T. Integrative Analysis of Multimodal Mass Spectrometry
Data in MZmine 3. Nat. Biotechnol. 2023, 41 (4), 447−449.
(51) Adusumilli, R.; Mallick, P. Data Conversion with ProteoWizard
msConvert. Methods Mol. Biol. Clifton NJ. 2017, 1550, 339−368.
(52) Dixon, P. VEGAN, a Package of R Functions for Community
Ecology. J. Veg. Sci. 2003, 14 (6), 927−930.
(53) Kowarik, A.; Templ, M. Imputation with the R Package VIM. J.

Stat. Softw. 2016, 74, 1−16.
(54) MissForest�non-parametric missing value imputation for mixed-

type data | Bioinformatics | Oxford Academic. https://academic.oup.
com/bioinformatics/article/28/1/112/219101 (accessed 2024−10−
25).

Journal of the American Society for Mass Spectrometry pubs.acs.org/jasms Article

https://doi.org/10.1021/jasms.4c00434
J. Am. Soc. Mass Spectrom. XXXX, XXX, XXX−XXX

R

https://doi.org/10.3390/metabo4020433
https://doi.org/10.3390/metabo4020433
https://doi.org/10.1038/s41598-017-19120-0
https://doi.org/10.1038/s41598-017-19120-0
https://www.sciencedirect.com/science/article/pii/S0895435618308710
https://www.sciencedirect.com/science/article/pii/S0895435618308710
https://doi.org/10.1093/nar/gkp356
https://doi.org/10.1093/nar/gkp356
https://doi.org/10.1007/s11306-018-1420-2
https://doi.org/10.1007/s11306-018-1420-2
https://doi.org/10.1007/s11306-018-1420-2
https://doi.org/10.1038/s41598-017-19120-0
https://doi.org/10.1038/s41598-017-19120-0
https://pubs.acs.org/doi/full/10.1021/acs.jproteome.5b00981
https://pubs.acs.org/doi/full/10.1021/acs.jproteome.5b00981
https://doi.org/10.1093/ije/dyad008
https://doi.org/10.1093/ije/dyad008
https://doi.org/10.1093/ije/dyad008
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-042720-124436
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-042720-124436
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-042720-124436
https://doi.org/10.1177/1469066720918446
https://doi.org/10.1177/1469066720918446
https://doi.org/10.1186/1471-2105-8-93
https://doi.org/10.1186/1471-2105-8-93
https://doi.org/10.1038/s41557-021-00803-1
https://doi.org/10.1038/s41557-021-00803-1
https://doi.org/10.1021/ac201767g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac201767g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1111/j.2517-6161.1982.tb01195.x
https://doi.org/10.3389/fmicb.2017.02114
https://doi.org/10.3389/fmicb.2017.02114
https://doi.org/10.3389/fmicb.2017.02114?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/gigascience/giz107
https://doi.org/10.1093/gigascience/giz107
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.1093/nargab/lqae071
https://doi.org/10.1093/nargab/lqae071
https://doi.org/10.1093/nargab/lqae071
https://doi.org/10.1128/msystems.00016-19
https://doi.org/10.1128/msystems.00016-19
https://doi.org/10.1038/s41587-022-01368-1
https://doi.org/10.1038/s41587-022-01368-1
https://doi.org/10.1007/s11306-016-1030-9
https://doi.org/10.1007/s11306-016-1030-9
https://doi.org/10.1007/s11306-016-1030-9
https://doi.org/10.1007/s11306-016-1030-9
https://doi.org/10.1093/ije/dyz032
https://doi.org/10.1093/ije/dyz032
https://doi.org/10.1093/ije/dyz032
https://doi.org/10.1021/acs.analchem.7b01381?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.7b01381?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.7b01381?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41587-023-01690-2
https://doi.org/10.1038/s41587-023-01690-2
https://doi.org/10.1007/978-1-4939-6747-6_23
https://doi.org/10.1007/978-1-4939-6747-6_23
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://doi.org/10.18637/jss.v074.i07
https://academic.oup.com/bioinformatics/article/28/1/112/219101
https://academic.oup.com/bioinformatics/article/28/1/112/219101
pubs.acs.org/jasms?ref=pdf
https://doi.org/10.1021/jasms.4c00434?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

