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Abstract 65 

Despite extensive efforts, extracting information on medication exposure from clinical records 66 

remains challenging. To complement this approach, we developed the tandem mass 67 

spectrometry (MS/MS) based GNPS Drug Library. This resource integrates MS/MS data for 68 

drugs and their metabolites/analogs with controlled vocabularies on exposure sources, 69 

pharmacologic classes, therapeutic indications, and mechanisms of action. It enables direct 70 

analysis of drug exposure and metabolism from untargeted metabolomics data independent 71 

of clinical records. Our library facilitates stratification of individuals in clinical studies based 72 

on the empirically detected medications, exemplified by drug-dependent microbiota-derived 73 

N-acyl lipid changes in a cohort with human immunodeficiency virus. The GNPS Drug Library 74 

holds potential for broader applications in drug discovery and precision medicine.   75 
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Main Text 76 

Growing evidence suggests that the chemical exposome plays a critical role in shaping 77 

human health, with drugs being a significant source of chemical exposure that carries 78 

profound health implications.1 According to a recent survey by the Center for Disease Control 79 

and Prevention, nearly half (45.7%) of the U.S. population used at least one prescription drug 80 

in the past 30 days.2 Drug concentrations in human blood are on par with those of 81 

endogenous and dietary molecules,3 and  have important impacts on the metabolic states 82 

and microbiome composition.4–7 Clinical research typically relies on medical records or self-83 

reporting surveys to assess drug exposure,8 but these methods are costly and often 84 

incomplete.8–10 They often overlook over-the-counter medications and supplements, and fail 85 

to account for patient adherence. Additionally, they miss drug usage not documented in 86 

medical records, such as those purchased online,10,11 acquired across borders,12,13 or 87 

consumed through secondary use of leftover drugs. Medical records are also incapable of 88 

documenting drugs introduced into the food supply that are unknowingly consumed, such as 89 

the antifungal natamycin used both to treat fungal eye infections and as a preservative for 90 

dairy products. Additionally, the varying half-lives of drugs and their metabolites further 91 

complicate exposure assessment, as some drugs are rapidly eliminated from the body while 92 

others can persist for months.14,15  93 

Untargeted metabolomics offers the opportunity to complement clinical records by 94 

empirically establishing the presence of drugs and their metabolites directly from biological 95 

samples. However, liquid chromatography-tandem mass spectrometry (LC-MS/MS) based 96 

annotations, which rely on reference MS/MS library matches, are difficult to interpret. For 97 

example, annotation may return a complex IUPAC chemical name like 98 

“(2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-11-[(2S,3R,4S,6R)-4-(dimethylamino)-3-99 

hydroxy-6-methyloxan-2-yl]oxy-2-ethyl-3,4,10-trihydroxy-13-[(2R,4R,5S,6S)-5-hydroxy-4-100 

methoxy-4,6-dimethyloxan-2-yl]oxy-3,5,6,8,10,12,14-heptamethyl-1-oxa-6-101 

azacyclopentadecan-15-one”. A text search in the right reference resource or an open web 102 

search can hopefully link this IUPAC name to “azithromycin”, the drug name used in clinical 103 

settings. A second search of the term “azithromycin” is then required to connect the name to 104 

its therapeutic role, in this case an antibiotic originally isolated from a bacterium. While this 105 

example involves a simple name and a limited number of identifiers for azithromycin, other 106 

compounds, like penicillin G or aspirin, have hundreds of synonyms and identifiers in 107 

chemistry databases such as PubChem, making the identification process more challenging. 108 

This task must be repeated for every obtained annotation, which can range from hundreds to 109 

thousands in a given metabolomics experiment, to find all detected drugs in a dataset. 110 

Even when the drugs are identified, the interpretation of their biological impacts 111 

requires extensive literature and web searches to understand the therapeutic roles of the 112 

drugs and their mechanisms of action. Public databases, such as DrugBank,16,17 113 

DrugCentral,18 DailyMed,19 and KEGG DRUG,20 can assist in interpretation, but the 114 

pharmacologic information is often provided as plain text or combinatorial classifications that 115 

require manual organization before downstream analysis. Although, in principle, large 116 

language models or similar text mining strategies can assist in this, the results of such models 117 
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still need manual verification to confirm accuracy.21–23 In addition, it is not uncommon that 118 

only metabolized versions of a drug is present in the sample, leading to missed drug exposure 119 

if only the parent drug is considered.24 Unfortunately, with very few exceptions, reference 120 

MS/MS libraries include only the parent drug but not the drug metabolites due to challenges 121 

in obtaining reference standards for these metabolites. 122 

The absence of MS/MS spectra for many drug metabolites, along with other 123 

challenges mentioned above, makes it very difficult to accurately annotate all drug exposures 124 

in biological specimens. For instance, stratifying a cohort based on antibiotic exposure - 125 

perhaps to better understand microbiome changes or as an exclusion criterion for clinical 126 

studies - requires identifying all antibiotics and their metabolites present in the samples. This 127 

is currently challenging due to the lack of resources that provide objective, systematic, and 128 

efficient readouts of drugs in untargeted metabolomics experiments.   129 

To address this gap and to enable data science strategies on drug readouts, we 130 

curated the Global Natural Product Social Molecular Networking (GNPS) Drug Library, a 131 

collection of reference spectra for drugs and their metabolites/analogs (including parent ion 132 

masses and MS/MS spectra) along with structured pharmacologic metadata including 133 

exposure source, pharmacologic class, therapeutic indication, and mechanism of action. This 134 

comprehensive resource will enable further data science analysis to empirically - and 135 

retroactively - determine drug exposure using untargeted metabolomics data, complementing 136 

the information available in clinical records. 137 

The creation of this library involved three key steps: 1) collecting MS/MS spectra of 138 

drugs and drug metabolites from publicly available MS/MS reference libraries; 2) finding 139 

MS/MS spectra analogs of those drugs in publicly accessible untargeted metabolomics data 140 

to enhance coverage of the metabolized versions of drugs; and 3) linking each MS/MS 141 

spectrum of a drug to controlled-vocabulary metadata - the key component of this resource 142 

that facilitates efficient data interpretation (Figure 1a).  143 

The reference MS/MS spectra of drugs and their known metabolites were collected 144 

from two of the largest open-access mass spectral libraries, namely the GNPS Spectral 145 

Library25 and MSnLib26. For all the MS/MS spectra in the GNPS and MSnLib, metadata 146 

enrichment was first performed against PubChem (for synonyms),27 DrugCentral,18 the Broad 147 

Institute Drug Repurposing Hub databases,28 ChEMBL (for pharmacologic information),29 and 148 

DrugBank (for pharmacologic information and the Anatomical Therapeutic Chemical 149 

Classification code).16,17,30 This process utilized the available metadata in the GNPS Spectral 150 

Library and MSnLib, including the chemical structures (e.g., SMILES or InChI), database 151 

identifiers (e.g., DrugBank ID or ChEMBL ID), and compound names. Based on the enriched 152 

metadata regarding clinical phases, all MS/MS spectra of drugs and compounds in clinical 153 

trials were compiled into the centralized GNPS Drug Library (see method details in 154 

Supplementary Text 1), resulting in 99,122 MS/MS reference spectra for 4,723 unique 155 

compounds. The compound names in the GNPS Drug Library were automatically curated 156 

and set to the first synonym in PubChem. We note that the term “drug” is used here in a broad 157 

sense, as the GNPS Drug Library includes not only prescribed and over-the-counter 158 
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medications but also compounds currently in clinical trials, drugs that have been withdrawn, 159 

as well as substances with potential for abuse (e.g., cocaine, fentanyl). 160 

Given that drug metabolites are largely overlooked in the initial search, we performed 161 

a second “partial name match” to include metabolites that retain the full drug names. For 162 

example, by searching for the name “venlafaxine” (a serotonin and norepinephrine reuptake 163 

inhibitor used to treat depression and various anxiety disorders), we obtained reference 164 

spectra for five of its metabolites, including “N-desmethylvenlafaxine”, “O-165 

desmethylvenlafaxine”, “N,O-didesmethylvenlafaxine”, “N,N-didesmethylvenlafaxine”, and 166 

“venlafaxine N-oxide”. Using this strategy combined with manual inspection of the results, we 167 

captured 2,080 reference spectra for the metabolites of 110 drugs. Lastly, we added the 168 

MS/MS spectra collected in the development of dmCCS,31 a collision cross section database 169 

for drugs and their metabolites where human liver microsomes and S9 fraction were used for 170 

in vitro generation of drug metabolites. In total, 4,087 spectra for the metabolites of 470 drugs 171 

were included in the GNPS Drug Library (Figure 1a).  172 
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173 
Figure 1. The GNPS Drug Library and connected pharmacologic metadata. a, The GNPS Drug 174 

Library comprises four key resources: Drug MS/MS reference spectra, drug metabolite MS/MS 175 

reference spectra, propagated drug analogs derived from public metabolomics datasets, and 176 

pharmacologic metadata connected to each reference spectrum. b, FastMASST analog search of drug 177 

spectra against public metabolomics studies yielded propagated drug-analogous MS/MS spectra, 178 

which were filtered by removing analogs for drugs with endogenous and food sources (source filter), 179 

removing mass offsets unexplained by common metabolic pathways (mass offset filter), removing 180 
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analogs with GNPS library matches (library match filter), removing analogs connected to multiple 181 

drugs with dissimilar structures after spectra clustering (drug similarity filter), and removing analogs 182 

with unrealistic drug exposure indications (dataset testing). c, Illustration of each filter employed in 183 

curating FastMASST analog match results. d, Frequency of mass offsets in the propagated drug 184 

analog library. The mass offsets were grouped by unit mass and stacked based on the number of 185 

analog spectra. The most frequently observed mass offsets are colored while the rests are black. e, 186 

An example of structural modification sites predicted by ModiFinder.32 Purple color highlights modified 187 

spectra and substructures, while the green color highlights unmodified ones. f, Overview of the 188 

ontology-based drug metadata, highlighting common pharmaceutical classes and specific drugs in the 189 

neurology/psychiatry category. Width of the bars and lines reflects the number of unique drug 190 

structures in each class. g, The top 20 most detected pharmacologic classes in fecal samples from 191 

the American Gut Project,33 a cohort of the general population from the United States (US), Europe, 192 

and Australia (1,993 individuals). h, Detected therapeutic drug class patterns by age and sex (1,845 193 

individuals with age and sex information; age 46 ± 18 years [range 3-93], with 53% being female). 194 

Detection of cardiovascular drugs increased with age, while analgesics, antihistamines, and antibiotics 195 

were detected across all ages.34,35 Analgesics were more frequently detected in females, consistent 196 

with the literature,36,37 and drugs for erectile dysfunction were detected only in males. NSAID, non-197 

steroidal anti-inflammatory drugs; ACE, angiotensin converting enzyme; SSRI, selective serotonin 198 

reuptake inhibitor; PPI, proton pump inhibitor; DHFR, dihydrofolate reductase; HSV, herpes simplex 199 

virus; SNRI, serotonin and norepinephrine reuptake inhibitor. 200 

 201 

Despite the extensive collection effort, metabolite reference spectra were only 202 

available for 10% of the drugs included in the GNPS Drug Library. We hypothesized that 203 

unannotated drug metabolites are present in public untargeted metabolomics data. We 204 

further hypothesized that spectral alignment strategies can be used to find the modified 205 

versions of the drugs.38–40 In other words, public untargeted metabolomics data could be used 206 

to create a reference library of candidate drug metabolites that will facilitate the drug exposure 207 

readout in future datasets. 208 

Based on MS/MS spectral alignment using two computational methods: repository-209 

scale molecular networking41 and fast Mass Spectrometry Search Tool (fastMASST) with 210 

analog search,42,43 we retrieved all possible MS/MS spectra analogous to drugs from the 211 

GNPS/MassIVE public repository (~2,700 LC-MS/MS datasets).25 These spectra represent 212 

drug-related molecules potentially derived from metabolism (host or microbiome), abiotic 213 

processes, and adducts of drugs from MS measurements. We obtained analogous MS/MS 214 

spectra for 14.6% of the 103,209 reference spectra for drug and drug metabolites (>5.5 million 215 

drug-analog spectral pairs). 216 

In testing of the propagated analog library, we identified the need for additional filters 217 

to enhance its relevance to drug exposure (Figure 1b-c). First, it is not possible to determine 218 

the sources of exogenously supplied chemicals that are also produced endogenously or 219 

derived from the diet. Consequently, structural analogs of drugs with endogenous or dietary 220 

sources were excluded from the propagated drug analog library (e.g., analogous MS/MS 221 

spectra of testosterone used to treat hypogonadism, or caffeine used as a stimulant drug, 222 

were excluded). Second, propagated analogs with uncommon or unexplained mass offsets 223 

(precursor mass difference between the propagated analog and the connected drug) were 224 
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excluded. Mass offsets were obtained from UNIMOD,44 from a community-curated list of 225 

explainable delta masses (Table S1), and from the Host Gut Microbiota Metabolism 226 

Xenobiotics Database,45 and were manually curated for those relevant to drug metabolism 227 

(e.g., 14.02 Da, methylation; 176.03 Da, glucuronidation) or mass spectrometry adducts (e.g., 228 

17.03 Da, ammonium adduct; see Table S2 for the 156 mass offsets that were included). 229 

MS/MS spectra of propagated analogs were excluded if the mass offsets were not in the 230 

customized list, or when the mass offsets occurred fewer than ten times. Third, since drugs 231 

within the same pharmacologic family often have similar structures, they can be identified as 232 

analogs of each other through spectral alignments. Therefore, we excluded MS/MS spectra 233 

with matches to the GNPS library from the propagated analog annotations. For example, a 234 

propagated analog of quinapril, an angiotensin converting enzyme (ACE) inhibitor, had a 235 

spectral match to ramipril, another ACE inhibitor (Figure 1c). Excluding these analog 236 

annotations ensures that they do not overwrite library matches of known drugs and 237 

metabolites. Fourth, if one propagated analog spectrum is connected to multiple drugs after 238 

spectral clustering, the drugs need to be structurally similar to accept the shared analog. We 239 

illustrate this with the propagated analog (m/z 287.133, with a formula C17H19ClN2) that is 240 

connected to both hydroxyzine [C21H27ClN2O2, mass offset 88.05 Da (C4H8O2)] and 241 

chlorcyclizine [C18H21ClN2, mass offset 14.02 Da (CH2)], which share the core structure 242 

(Figure 1c). Finally, we tested the propagated drug analog library against 12 public LC-243 

MS/MS datasets to filter out analogs that have unrealistic drug exposure indications. The 244 

selected datasets represent a broad range of human tissue types and biofluids, including 245 

fecal (n=5), breast milk (n=2), plasma (n=3), skin (n = 1), and brain (n=1), as well as multiple 246 

mouse tissues (n = 2; with metadata confirming no drugs were used). We observed analogs 247 

of tocofersolan (a synthetic vitamin E derivative), iloprost (a synthetic prostacyclin mimetic), 248 

desonide (a synthetic topical corticosteroid), medroxyprogesterone (a synthetic progestin), 249 

and vidarabine (an adenosine analog used as an antiviral) in >50% of the human fecal 250 

samples from the American Gut Project (n = 1,993 individuals), a cohort of the general 251 

population. The connected drugs for these analogs are derivatives of endogenous or food 252 

derived molecules and are unlikely to be used by more than half of the population. Therefore, 253 

these analogs cannot be confidently linked to drug exposures and were excluded. Analogs of 254 

polidocanol (a synthetic long-chain fatty alcohol used as anesthetics) were observed in >70% 255 

of 2,463 human milk samples. They are likely surfactants/contaminants with the polyethylene 256 

glycol structural units46 and thus were excluded from the propagated drug analog library 257 

(Figure 1c).  258 

After all filtering steps, 3,234 clustered MS/MS spectra representing propagated 259 

analogs of 577 drugs were retained in the final drug analog library. We observed that 75% of 260 

the propagated analogs occurred at least once in the same data file with the corresponding 261 

parent drugs (Table S3). The most common mass offsets in the drug analog library 262 

correspond to a gain of 15.99 Da, which can be interpreted as the gain of an oxygen (e.g., 263 

oxidative metabolism of the drug), followed by a gain or loss of 14.02 Da (CH2, 264 

(de)methylation), a gain of 1.00 Da (13C isotope), a gain of 2.00 Da (O/S/Cl/Br/2C isotopes), 265 

and a gain or loss of 28.03 Da (C2H4, (de)ethylation; Figure 1d). Notably, it is possible that 266 
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such analog spectra are MS/MS of other ion forms of the parent drug, such as isotopes, 267 

different adducts, in/post-source fragments, or multimers, rather than drug metabolites or 268 

structural analogs. However, their indications in drug exposure remain the same and thus we 269 

did not separate drug metabolites and instrument adducts in drug exposure stratification. To 270 

extend structural hypotheses for the drug analogs, we employed the newly developed 271 

ModiFinder,32 which leverages the shifted MS/MS fragment peaks in the MS/MS alignment to 272 

predict the most likely location of the structural modifications. We were able to predict the 273 

partial location of the modification for 61.5% of the analog spectra. We demonstrate examples 274 

where ModiFinder predictions agree with expert manual interpretation of the MS/MS spectra 275 

(Figure 1e, S1). 276 

Connecting drug detections to their therapeutic indications typically requires expert 277 

knowledge and/or extensive literature searches. The GNPS Drug Library addresses this 278 

challenge by providing controlled-vocabulary metadata together with the specific drug 279 

annotations. This allows users to annotate all drugs in an untargeted metabolomics dataset 280 

and directly obtain a table with exposure sources, pharmacologic classes, therapeutic 281 

indications, and mechanisms of action of the drugs, with their structures and names in a data 282 

science ready format (Figure 1f, S2). Particularly, the “exposure source” information 283 

categorizes the drugs in a combination of five classes, namely medical, endogenous, food, 284 

personal care, and industrial sources, which was based on the source categorizations from 285 

the Chemical Functional Ontology (ChemFOnt) database47 and modified manually - by 286 

parsing of web pages and scientific literature - to increase compound coverage and improve 287 

accuracy and consistency. This categorization allows distinguishing endogenous or food 288 

sourced molecules (for the non-analogous spectra only). Examples include deoxycholic acid, 289 

an endogenous molecule also used for liver disease, and lactitol, a food sweetener also used 290 

as a laxative. Using the GNPS Drug Library metadata, such annotations can be separated 291 

from those molecules used exclusively as drugs, which have entirely different exposure 292 

implications. 293 

Through structural and name matches, we extracted the pharmacologic classes of 900 294 

drugs from the U.S. Food and Drug Administration (FDA) and the therapeutic areas, 295 

therapeutic indications, and mechanisms of action for 3,894 drugs from the Broad Institute 296 

Drug Repurposing Hub.28 However, we noticed substantial variability in the extracted 297 

information (e.g., inconsistent therapeutic areas assigned to drugs within the same 298 

pharmacological class; the sulfonamide antimicrobials sulfamethizole, sulfamethazine, and 299 

sulfacetamide were categorized as infectious disease, gastroenterology, and ophthalmology, 300 

respectively), or insufficient metadata for several drugs (e.g., common therapeutic indications 301 

missing). Therefore, this metadata was further manually curated by expert clinical 302 

pharmacologists to enhance and clean up the information retrieved from databases. This 303 

manual curation increased the metadata coverage to 4,560 drugs. Drugs without associated 304 

metadata are typically those that have been withdrawn from the market (e.g., indoprofen), 305 

were in drug development but never marketed (e.g., tarafenacin), or are under development 306 

but do not yet have regulatory approval (e.g., firsocostat).  307 
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In total, 735 drugs in the GNPS Drug Library (38,001 spectra) were identified with 308 

endogenous or dietary sources. The final metadata of the drug library covers 27 unique 309 

therapeutic areas, 571 pharmacological classes, 920 therapeutic indications, and 823 310 

mechanisms of action (Figure 1f, S2). Therapeutic areas of neurology/psychiatry, infectious 311 

disease, and cardiology have the highest number of included drugs (Figure 1f) and reference 312 

spectra (Figure S2). We note that these incidences reflect the availability of the reference 313 

spectra but not the prevalence of these drugs in the general population. Combining the 314 

exposure source and therapeutic area, we noticed that fewer drugs related to infection and 315 

neurology/psychiatry have endogenous or food sources, while higher portions of drugs used 316 

for gastroenterology (e.g., deoxycholic acid, riboflavin) and dermatology (e.g., salicylic acid, 317 

nicotinamide) are endogenous and/or can come from food-derived molecules. 318 

 In order to assess the utility of the GNPS Drug Library for detecting drugs known to 319 

be consumed, we analyzed two pharmacokinetic datasets where healthy individuals received 320 

certain drugs followed by time-series sampling. In the first study, 10 participants received a 321 

single oral dose of diphenhydramine.48 The drug was not detected in plasma and skin 322 

samples before administration, but was detected in all individuals post-administration over 323 

the course of 24 hours (Figure S3a). In plasma, detection frequencies peaked at 1-2 hours 324 

(Figure S3a), aligning with the reported time to maximum concentration (~2 hours) for 325 

diphenhydramine.49 In skin, peak detection occurred at 10-12 hours (Figure S3a), reflecting 326 

the delayed deposition to skin compared to plasma for orally administered drugs. In the 327 

second study, 14 participants received a cocktail of oral caffeine, midazolam, and 328 

omeprazole.50 These drugs were detected in plasma from 100%, 69%, and 100% of 329 

participants, respectively (Figure S3b). The detection frequencies in fecal samples were 330 

below 25%. The same participants began a 7-day course of oral cefprozil (administered twice 331 

daily; day 2-8) the day after the cocktail drug administration. Cefprozil was detected in fecal 332 

samples with increasing frequencies from 0% at day 2 to 43% at day 9. These results 333 

demonstrate that the GNPS Drug Library can reliably detect consumed drugs and that 334 

detection is both biofluid and time dependent. The results also emphasize the need to 335 

establish medication exposures empirically in the context of the analyzed samples, as clinical 336 

studies rarely recorded the time between drug intake and sample collection.  337 

Connected with public untargeted metabolomics data, the GNPS Drug Library can 338 

reveal distinct drug exposure profiles among individuals with different disease, age, and sex. 339 

For different disease studies, we used the human disease ontology identifier (DOID) curated 340 

in ReDU, a controlled-vocabulary metadata for public metabolomics datasets,51 and searched 341 

for the drugs and drug analogs using fastMASST.42 Samples from individuals with 342 

inflammatory bowel disease, Kawasaki disease, and dental caries were characterized by high 343 

detection frequencies of antibiotics (Figure S4a). Skin swabs of patients with psoriasis were 344 

characterized by antifungals. Samples from people with human immunodeficiency virus (HIV) 345 

showed high frequency of antivirals, and samples from individuals with Alzheimer’s disease 346 

were characterized by cardiology and neurology/psychiatry drugs, all consistent with the 347 

expected drug usage of people with these diseases (Figure S4a).  348 
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To investigate drug exposures among different age and sex groups, we profiled 1,993 349 

fecal samples from the American Gut Project,33 with participants from the United States (US), 350 

Europe, and Australia with age  46 ± 18 years (range 3-93; 53% female). A total of 75 different 351 

drugs were detected; the most frequently detected pharmacologic classes included 352 

histamine-1 receptor antagonist (allergy), angiotensin II-receptor blocker (cardiology), ACE 353 

inhibitor (cardiology), beta-adrenergic receptor inhibitor (cardiology), statin (lipid-lowering), 354 

non-steroidal anti-inflammatory drug (NSAID; analgesics), and selective serotonin reuptake 355 

inhibitor (SSRI; antidepressant), which matches with the most commonly prescribed drug 356 

classes in these regions (Figure 1g).52–54 There were more drugs per individual noted in the 357 

US cohort compared to the European and Australian cohorts (chi-square test; χ2 (8, n = 1,903) 358 

= 33, p = 5.3  10-5, Figure S4b). When connected with age and sex information, the drug 359 

detection agrees with the expected usage patterns of different drug classes (Figure 1h). For 360 

example, cardiovascular drugs were detected more frequently with increasing age, while 361 

analgesics, antihistamines, and antibiotics were detected across all ages.34,35 We also 362 

observed that analgesics, such as NSAIDs and paracetamol, were more frequently detected 363 

in females (chi-square test; χ2 (1, n = 1,958) = 15.4, p = 8.54 x 10-5), consistent with the 364 

literature,36,37 and that drugs for erectile dysfunction were detected only in males. Overall, 365 

empirical drug readout using untargeted metabolomics, facilitated by the GNPS Drug Library, 366 

demonstrated good specificity among individuals with different disease, age, and sex. 367 

The GNPS Drug Library can allow the discovery of previously uncharacterized drug 368 

metabolites. To illustrate this, we analyzed fecal samples from the HIV Neurobehavioral 369 

Research Center (HNRC) cohort (n = 322; age 55 ± 12 years), which included both people 370 

with HIV (n = 222) and people without HIV (n = 100). Among the 17,729 unique MS/MS 371 

spectra obtained, 493 were annotated with the GNPS Drug Library. After removing drugs that 372 

could be from endogenous or food sources (because we cannot assess whether they were 373 

given as a medication) and grouping annotations of drugs, metabolites, or analogs, 169 374 

unique drugs remained. Antiretroviral drugs (ARVs; drugs for the treatment of HIV), drugs for 375 

cardiovascular disease, and drugs for anxiety and depression were the most frequently 376 

detected categories (Figure 2a, S5a). Despite the high rates of viral suppression with the 377 

advent of antiretroviral therapies (ART; a combination of ARVs to treat HIV), people with HIV 378 

have disproportionately high rates of depression and cardiovascular diseases,55–58 reflected 379 

in the observation of antidepressants and cardiovascular drugs in these samples.  380 

Interestingly, 33% of the drugs were annotated together with their metabolites or 381 

analogs, and the occurrences of drug metabolites/analogs aligned with those of the parent 382 

drugs (Figure 2a). For example, darunavir (an ARV) had no annotated metabolites but was 383 

observed with 10 analogs (Figure S5b). Retention time and peak shape analysis indicated 384 

that two of the darunavir analogs are in-source fragments (as judged by overlapping retention 385 

times),59 while the others remain unknown metabolites or isomers of this drug (Figure S5c,d). 386 

For the analogs that are not in-source fragments, 63-100% (median 96%) of their occurrences 387 

were together with the darunavir parent drug. The observations of darunavir analogs without 388 

the parent drug are perhaps related to the timepoint of sample collection or to individuals with 389 

an ultrarapid metabolizer phenotype, impairing the detection of the parent drug. Nevertheless, 390 
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this observation highlights the utility of drug metabolites and analogs to increase the 391 

sensitivity of drug exposure readouts via untargeted metabolomics. We note that the HNRC 392 

dataset was added to the GNPS/MassIVE public repository after the development of the drug 393 

analog library. Therefore, analog mining via existing public metabolomics datasets can 394 

facilitate the discovery of uncharacterized metabolites in new data.  395 

To further investigate the potential metabolic sources of the observed drug analogs, 396 

we cultured darunavir and 12 other drugs with a defined and complex synthetic microbial 397 

community of 111 bacterial species commonly found in the human gut.60 Except clindamycin 398 

(an antibiotic), all drugs observed with three or more metabolites/analogs that were present 399 

in >10% samples were incubated (10 drugs in total; Table S4); omeprazole, loratadine, and 400 

terbinafine were additionally included because their analogs were frequently observed in 401 

samples without the respective parent drugs. Shared analogs were observed for 10 of the 13 402 

drugs between the fecal samples and the microbial incubations. Among them, 403 

metabolites/transformation products were observed for 4 drugs (ritonavir, atorvastatin, 404 

abacavir, and omeprazole; Figure 2b, S6), while the rest of the analogs were in-source 405 

fragments based on retention time correlation analysis.59 The ritonavir, atorvastatin, and 406 

abacavir analogs increased in intensity with increased microbial incubation time (Figure S6a-407 

d), indicating microbial metabolism as a possible source and consistent with their observation 408 

in fecal samples. The omeprazole analog (m/z 330.127) appeared to be an abiotic 409 

transformation product because it was already present at t=0 cultures, and its intensity 410 

decreased with increased incubation time (Figure S6e-g). This is consistent with the fast 411 

activation of omeprazole (m/z 346.122), a proton-pump inhibitor and a prodrug, to the reactive 412 

sulphenamide product (m/z 330.127) at low pH.61 Rapid photolysis and hydrolysis of 413 

omeprazole has also been reported in abiotic environments with a major deoxygenation 414 

transformation product (m/z 330.127).62,63  415 
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 416 
Figure 2. Drug exposures in the HIV Neurobehavioral Research Center (HNRC) cohort with 417 

connections to microbial metabolism and endogenous metabolites. From the HNRC cohort, 322 418 

fecal samples were analyzed with 222 samples from people with HIV and 100 samples from people 419 

without HIV. a, Peak area visualization of drugs detected with metabolites and analogs. Each column 420 

represents one sample and each row represents one drug annotation. Drug annotations were grouped 421 

based on the parent drugs and separated by gap spaces. Drug annotations were denoted based on 422 

their types (as drug, drug metabolites, or drug analogs) and the pharmacologic classes of the parent 423 

drugs. All annotated ion/adduct forms of the parent drugs were visualized, leading to multiple rows of 424 

parent annotations for some drugs. Asterisks on the drug name mark parent drug annotations 425 

confirmed with commercial standards based on retention time and MS/MS spectral matches. Raw 426 

peak areas were log-transformed. b, Retention time and MS/MS spectra mirror matches for drug 427 

analogs observed in both the fecal samples and the drug microbial incubations. Purple traces 428 
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represent the fecal samples, while red traces represent the drug microbial incubation. Blue traces 429 

represent mixtures of the fecal samples and the microbial incubations at 1:1 volume ratio. The atomic 430 

changes of the drug analogs were based on [M+H]+ ion of the parent drug. c, Hierarchical clustering 431 

of the samples from people with HIV (n = 222) based on detected antiretroviral drugs (ARV). Each row 432 

represents one detected ARV, with peak areas summed for the drug, metabolite, and analog 433 

detections followed by log-transformation (visualized with the same color scale as panel a). ARVs 434 

detected in <10% of samples are not shown. Each column represents one sample, clustered into four 435 

groups by hierarchical clustering with Ward’s linkage and Euclidean distance. d, Sample-to-sample 436 

peak areas of N-acyl lipids in people with HIV, separated by the clusters derived from ARV detections 437 

shown in panel c. For each compound, the peak area in each sample was standardized to the 438 

maximum value observed across all samples. A non-parametric Kruskal-Wallis test followed by 439 

pairwise Wilcoxon test and Benjamini-Hochberg correction for multiple comparisons were performed. 440 

P-values < 0.05 were noted in the figure. Boxplots showcase the median value, first (lower) and third 441 

(upper) quartiles, and whiskers indicate the error range as 1.5 times the interquartile range. 442 

 443 

The GNPS Drug Library can enable stratification based on drug profiles, which 444 

facilitates discovery of connections between drug exposures and endogenous metabolites. 445 

N-acyl lipids are a class of signaling molecules made by host-associated microbiota64 that 446 

play important roles in the immune system,65 memory function,66 and insulin regulation of the 447 

human body.67–69 Our recent ongoing work found that the levels of histamine N-acyl lipids 448 

differed by HIV serostatus. Specifically, we observed higher levels of histamine-C2:0, 449 

histamine-C3:0, and histamine-C6:0 in people living with HIV than people without HIV.70 To 450 

investigate whether these differences were related to drug exposures, we further stratified 451 

samples in this dataset by their ARV exposure profiles. As expected, the ARV profiles clearly 452 

separated based on the HIV serostatus (Figure S7a). High intensities of different ARVs were 453 

observed in fecal samples from people with HIV, while ARVs were only occasionally observed 454 

in people without HIV with low intensities. ARVs observed in people without HIV include 455 

tenofovir, maraviroc, atazanavir, and raltegravir, which are commonly used for prophylaxis 456 

(Figure S7a).71,72 To control for the HIV serostatus and investigate the effects of ARV 457 

exposure, we excluded samples from people without HIV and stratified the people with HIV 458 

(n = 222) based on their ARV co-occurrences. Four distinct ARV exposure groups were 459 

observed based on hierarchical clustering that agreed well with the different combination 460 

antiretroviral therapy (cART) regimens (Figure 2c). For example, Group 1 (n = 48), 461 

characterized by lamivudine, abacavir, and dolutegravir exposures, corresponded to the 462 

dolutegravir/abacavir/lamivudine treatment regimen.73 Group 2 (n = 58) with emtricitabine, 463 

darunavir, ritonavir, and cobicistat exposures, agreed with the darunavir/ritonavir regimen74 464 

and the darunavir/cobicistat/emtricitabine/tenofovir regimen.75 Group 3 (n = 79), 465 

characterized by emtricitabine and dolutegravir exposures, may be related to the 466 

dolutegravir/emtricitabine/tenofovir treatment regimen (Group 2).76 Group 4 (n = 37) were 467 

without apparent ARV exposures, possibly due to poor adherence, severe comorbidities, HIV 468 

elite control, or ARVs not included in the GNPS Drug Library or not amenable with LC-MS/MS 469 

detections (Figure 2c). Notably, we observed that the levels of histamine-C2:0 previously 470 

associated with HIV serostatus,70 along with the levels of eleven other N-acyl lipids, were 471 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2024. ; https://doi.org/10.1101/2024.10.07.617109doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?qsCrL7
https://www.zotero.org/google-docs/?zn7pje
https://www.zotero.org/google-docs/?MR0V9b
https://www.zotero.org/google-docs/?xAvIE9
https://www.zotero.org/google-docs/?HBxI0t
https://www.zotero.org/google-docs/?Opp94F
https://www.zotero.org/google-docs/?fdL7zn
https://www.zotero.org/google-docs/?3Cf0xh
https://www.zotero.org/google-docs/?gdvcm7
https://www.zotero.org/google-docs/?m8Iw93
https://www.zotero.org/google-docs/?scObJy
https://doi.org/10.1101/2024.10.07.617109
http://creativecommons.org/licenses/by/4.0/


16 

significantly different in the four ARV exposure groups (Kruskal-Wallis test, p-value < 0.05; 472 

see specific p-value in Figure 2d). This suggests that exposure to different classes of ARV 473 

among people with HIV, in addition to HIV serostatus itself, might contribute to changed levels 474 

of these N-acyl lipids. We emphasize that these patterns could not have been revealed 475 

without the empirical drug readouts from untargeted metabolomics. Clinical research records 476 

may not document exposures to individual drugs and often do not provide quantitative 477 

information on the exposure levels. For example, metadata for the HNRC cohort on current 478 

ARV usage, which is based on self-reports, documented drug usage as “ARV-naïve” (never 479 

received ARV), “no ARV” (no current ARV use), “non-HAART” (currently using less than three 480 

ARVs), and “HAART” (currently using three or more ARVs). Based on these classifications, 481 

no significant differences were observed for the 52 N-acyl lipids detected in these samples 482 

(Figure S7b). Without the empirical drug readout, enabled by the GNPS Drug Library, the 483 

effects of drugs on microbial N-acyl lipid levels would be overlooked. 484 

  We anticipate the GNPS Drug Library to play a key role in precision medicine by 485 

enhancing our understanding of the effects of drugs across a wide range of phenotypes, 486 

including endogenous metabolism, gut and skin microbiome, pharmacokinetics, and drug-487 

drug interactions. The empirical drug readouts from the GNPS Drug Library can enhance the 488 

clinical metadata by providing sample-to-sample comparisons of the relative abundance of 489 

individual drugs, which can be flexibly summarized at multiple ontology levels depending on 490 

user-defined questions. The mass spectrometry community will play a key role in the 491 

evolution of this resource through the continued deposition of reference libraries and 492 

expansion of the public metabolomics datasets for analog searches. By harnessing the power 493 

of public data and data science-ready metadata, we can unlock opportunities to deepen our 494 

understanding of the intricate relationships between xenobiotic exposure and human 495 

biological systems. 496 

 It is important to understand that the use of the GNPS Drug Library holds certain 497 

limitations. The current library only supports MS/MS-based annotations to level 2/3 according 498 

to the 2007 Metabolomics Standards Initiative.77 This generally means that spectra of drug 499 

isomers may be annotated as the drug. Key drugs with important clinical implications should 500 

be checked for retention time matching and be quantified with analytical standards should the 501 

scientific question warrant this. The GNPS Drug Library can only capture drugs that are 502 

detectable in the specific biological matrix of choice (e.g., brain samples and urine will likely 503 

have different drug exposure readouts) and drugs that are ionizable with the chosen mass 504 

spectrometry setup. When constructing the drug analog library, we designed the filters to 505 

retain analog spectra that can be as confidently linked to drug exposure as possible, at the 506 

likely cost of excluding true positives. For example, metabolism pathways specific to 507 

substructures infrequently captured or missing in our customized delta mass list will be 508 

excluded. Metabolites shared between drugs that cannot be connected by the applied 509 

structural similarity scores (the Tanimoto score)78 will be lost. As this is an evolving resource, 510 

we encourage the community to not only add to, but also report any inconsistencies in the 511 

library and the metadata they may notice.  512 

 513 
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 578 

Data availability: 579 

The MGF spectral files for the GNPS Drug Library and the associated metadata of controlled 580 

vocabularies (.csv) can be downloaded from Zenodo archive under doi: 581 

10.5281/zenodo.13892289. The downloaded MGF spectral files can be added to personal 582 

GNPS folders and used directly for library matching. Data used to validate the empirical drug 583 

readouts are publicly available in GNPS/MassIVE under the accession numbers 584 

MSV000085944, MSV000084008, and MSV000082493. Data used to profile drug exposures 585 

by age and sex are available at MSV000080673. Data for fecal samples from the HNRC 586 

cohort are available at MSV000092833. Data for the drug bacterial cultures are available at 587 

MSV000095331. Data for HNRC fecal samples analyzed with the bacterial cultures are 588 

available at MSV000096012. Data for co-migration of the bacterial cultures and fecal samples 589 

are available at MSV000096013. Due to human subject protection constraint, metadata for 590 

the HNRC cohort will be provided upon request to HNRC: https://hnrp.hivresearch.ucsd.edu. 591 

 592 

Code availability: The code used to query reference spectra of drugs is available on GitHub 593 

under the MSn library project26 (https://github.com/corinnabrungs/msn_tree_library). The 594 

code used to filter the drug analog matches is provided on GitHub 595 

(https://github.com/ninahaoqizhao/Manuscript_GNPS_Drug_Library). The code used for 596 
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dataset analysis can be found on GitHub 597 

(https://github.com/ninahaoqizhao/Manuscript_GNPS_Drug_Library and 598 

https://github.com/kinekvitne/manuscript_drug_library). 599 

 600 

Supplementary Figure 601 

Supplementary Figure S1. Additional examples of structural modification sites of the drug 602 

analogs predicted by ModiFinder; Supplementary Figure S2. Overview of the ontology-based 603 

drug metadata based on the numbers of reference spectra; Supplementary Figure S3. 604 

Empirical drug readout in healthy individuals receiving specific drugs; Supplementary Figure 605 

S4. Drug exposure profiles among cohorts with different diseases and geolocations by re-606 

analyzing public metabolomics data; Supplementary Figure S5. Drug analog annotations in 607 

fecal samples from people with human immunodeficiency virus; Supplementary Figure S6. 608 

Drug analogs observed in human fecal samples can be produced by microbial metabolism; 609 

Supplementary Figure S7. Comparison of sample clustering based on empirical drug records 610 

from the GNPS Drug Library or on clinical metadata; Supplementary Figure S8. Retention 611 

time and MS/MS spectra mirror matches for drugs observed in the HNRC cohort with 612 

analytical standards. 613 

 614 

Supplementary Table 615 

Supplementary Table S1. Community-curated list of delta mass interpretation; 616 

Supplementary Table S2. Delta masses accepted in the drug analog library; Supplementary 617 

Table S3. Percentage of drug analogs demonstrating co-occurrence with the parent drugs in 618 

MASST search, separated by delta masses; Supplementary Table S4. Source of drugs used 619 

in synthetic microbial community incubation; Supplementary Table S5. Bacterial strains used 620 

in the six synthetic microbial communities; Supplementary Table S6. Composition of the BHI 621 

medium for anaerobic microbial cultures. 622 
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